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0 What to Know for the Exam

o to use transformation of variable: eg. given X and its cdf/pdf how to find the cdf/pdf of Y=g(X)
o The model r=m+sg*z and its properties (eg. mean, variance, simulation of cumulative returns)
e The Variance Ratio Test

o The model r= rho*r(t-1)+sg*z and its properties (eg. mean, variance, simulation of cumulative returns). How
to adjust VaR for autocorrelation

o Parametric VaR: asset and portfolio level (covariance matrix); Cholesky decomposition and Monte Carlo sim-
ulation

o Non Parametric VaR: quantile, bootstrap/historical simulation
o Estimation Risk: Parametric vs Bootstrap

« Backtesting VaR: Kupiec test, its functioning and its limits. How to compute the probability of type 1 and
type 2 errors

¢ Risk decomposition: MVaR, CVaR, IVaR
e Coherent Risk measures

e EWMA model: univariate and multivariate specfication. Pros & Cons. Comparison with GARCH and SV
models.

e VaR & Derivatives: exact formula, delta var and delta-gamma

 Principal Component Analysis (PCA is also part of Fixed Income): derivation of the characteristic equation,
computation of PCA in Excel and Matlab, how to use PCA to estimate the VaR of a bond portfolio

« Content of the coursework

o Exercise Handbook: Questions with up to 3 stars

¢ Exam Structure:

Remember that simple calculations do not deserve full marks. You have to outline all the assumptions/relevant
aspects that allow you to arrive to the final result.
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Introduction to Risk Analysis

Types of risks:

Market Risk
Credit Risk
Model Risk
Liquidity Risk

Operational Risk

Measuring Return

Model directly price, but it is non-stationary

Model returns rather, as its is stationary

The normality aasumption must be attached to log-returns rather to simple returns
R (simple returns) will be distributed according to a shifted log-normal distribution
Basic model for A—period log-returns: r(t) = r(t,t + A) = ps(t) + oa(t)e(t)

— If stationary assumptions on r is valid, i.e. Cove(r(s,s + A),r(u,u+ A)) =0, Vu,s
— then E(r(t,t + A)) = pa(t) and Vi(r(t,t + A)) = 04 (?)

The assumption of zero-autocorrelation in log-returns can be tested using the Variacne Ratio Test

— VR(n) = ;li“m ~ N(1, Q(ninl)), which is close to 1 if the assumption is true

— normalize it, we have z(n) = % ~ N(0,1)
Tn

— [-1.96,1.96] is the 95% acceptance region of the assumption

MC simulation of returns: ra(t) = ua + oae(t)
then stock prices: S(t 4+ A) = S(t) x era(®)
Serially correlated AR(1) model:

—r(t) = pr(t — A) + oae(t)
— standard deviation growths according to:

_ n(l —p?) +p(1l—pn)(pnt! —p—2)
SDev(r(t,t + nA)) = JA\/ (1—=p)31+p)

/L (1)

=oavn — 2 (Approximation)

— if we adopted square-root when the returns are AR(1), the ratio between true value and our estimate:
o A% 1

oav/n  1—p

— then we under-estimated the true volatility (p > 0) or over-estimated it (p < 0)

(2)

— MC simulation of returns:
ra(t) = pra(t — A) +onae(t) (3)

Normal approximation is good for short horizons
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Introduction to Value at Risk

SPAN system not appropriate for muilt-assets portfolio

If estimated properly, the P&L distribution reflects the netting and diversification effects and can be compared
acorss portfolios
— are past data useful to forecast the future risk?

— best approach is a combination of approaches trying to include forward-looking information as well
Basel committee chose:

— a 10-day horizon

— a 99% confidence level

— the probability distribution construction is left to the user

— Internal risk models: report 99% VaR over both one-day and 10-day horizon

MRC(t) = VaRo g9 (t, t + 3%), (5 372 VaRo o9 (t — 5k, t — 522))

Estimating VaR: Parametric and Non-Parametric Approaches

Parametric approach: such as the log-returns are distributed according to a Gaussian r.v., which requires
parameters estimation

Non-parametric approach: do not make any assumption and use past data to build the empirical distribution

Gaussian parametric approach:

7%( —VaRg—pa )2

— ESq(t,t+A) = —(ua — 25— oA ) = —(ua — op2E=2)

1—a 271 11—«

— BSa(t,t +nA) = —(na — oA 22 $(Z; — o))
— CONS:

x assumes the future will be like the past
* model-dependent procedure may be misleading if model is poor
* cannot capture skewed and fat-tailed characteristic

Historical Simulation Approach:

— if (1 — )T is not an integer number, linear interpolation is required
— no simple procedure to extrapolate a n-period VaR
— need to collect n-period returns (inefficient)

— BOOTSTRAPPING: for T sufficiently large, we expect the bootstrapped distribution to be near the true
distribution (Central Limit Theorem)

— not accurate compared with parametric Gaussian approach, but no exposure to model risk
— sensitive to the length of data sample used
— unconditional distribution, i.e. do not model changes in volatility

— ghost effect

e Top-down approach:

— specifies the portfolio P&L distribution without reference to the constituents
— more parsimonious

— not fine enough to identify the identity of the component that contributed the most to the portfolio VaR

e Bottom-up approach:

— this requires the specification of the dependence structure, i.e. the joint distribution of the components



» Estimation error:
— for large T, s.e.(VaRq(t,t +nA)) = oa X V3% X |Z1-a| (Parametric Approach)

— for large T, s.e.(VaRi_q) = % (Non-parametric Approach)

e log-normal distribution:

2

— E(Y) = e+29° and Var(Y) = e2419° (7" 1)

5 Regulation and Backtesting VaR

o Internal risk model:

— report both the 99% VaR over a both a one-day horizon, i.e. VaRg.g9(t,t + 55=) and

255
10
255)

— the one on a 10-day horizon, i.e. VaRg.g9(t,t +

« MRC(t) = VaRg.o9(t,t + o), (% 2?20 VaRo.g9(t — 70z, t — 52))

e even when the multilier takes the value of 1.5, the MRC produces a much higher risk measure than 99.9% VaR
e Unconditional Coverage

— The Kupiec Test:

x examines the number of violations but does not consider if they cluster in time or not
x also called POF test

x 1 — « is the theoretical probability of having a violation
iz fia(e)
n

* 1 —a= is the observed violation frequency

*

log-likelihood ratio: LRy, = —2log 7]

null hypothesis: the VaR model is good (LR, should have values near to 0)

*

*

Asymptotically:

LRy = ~2(08((1—2 ) +log((3)"))
1— a (4)

o
1-a

= —2(jlog(

* Limits of Kupiec test:
- require a large number of data
low power of test (Type II error) (increase the number of observations can reduce this problem)

low power problem is exhacerbated when using MC simulation as the true model is changing
conditional volatility

focus only on the number of exceptions, without considering the time distribution of those excep-
tions

do not care about the size of the violation as well
e Independence property

— previous VaR violations must not convey any information about whether or not an additional VaR violation

— if a VaR violation is more likely to occur after a previous VaR violation, the this implies that the probability
of I; 1 a(«) conditional on the event that I, (a) = 1 exceeds 1 — ¢, and indicating that VaR estimate is too
small



6 Coherent Risk Measure

e VaR does not describe the maximum loss
e VaR does not describe the losses in the left tail
o estimation risk in VaR (the sampling variability due to limited sample size)

— larger sample, better accuracy

— larger confidence level, lower accuracy
e may be not sub-additive

— diversification benefits (sub-additivity): VaR(X +Y) < VaR(X) + VaR(Y)

— VaR in Gaussian case has this peroperty, in other VaR, this may be violated
e Coherent Risk Measure:

— Monotonicity: ¥ > X = p(Y) < p(X), i.e. if Y has better value under almost all scenarios, then Y
should have less risk

Subadditivity: p(X +Y) < p(X) + p(Y)

Positive-homogeneity: p(AX) = Ap(X), if A >0

— Translation invariance: p(X + ¢) = p(X) — ¢

« ES and the worst-case analysis as in the SPAN system, are coherent risk measures
o VaR is coherent only under special assumptions about the distribution of returns (i.e. elliptical distribution)

e Proof of VaR is sub-additive under Gaussian case ...

7 Hot Spot Measuring Risk Contribution
e Marginal Risk:
— MRisk is the change in the portfolio risk from taking an additional dollar of exposure to a given component:
— MRisk = 22e(w)
o Incremental Risk:

— IRisk is the change in the portfolio risk owing to a new position from taking an additional dollar of
exposure to a given component:

— TRisk = po(w + Aw) — po(w) = M Risk’ - Aw

e Component Risk:
— CRisk indicates how much the portfolio risk would change if the given component was deleted;
— CRisk is the contribution of each component to the portfolio risk:

— CRisk = w. x M Risk

— the sum of Component Risk returns the total portfolio risk (if the risk measure is a homogeneous risk
function)

e In the Gaussian setting:

OVaR,(t, t +nA) DAW
= — Z a—————
ow Hamn 1 S W ZAW\/H
CVaR=w.x MVaR
VaR =w MVaR

MVaR =

e use EWMA to update VCV matrix
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Best hedge:

— the VaR reduction given this hedge can be estimated as:
— AVaR = MVaR; x Aw;

— Aw; = _UL;'
3 Ui

Portfolio Modelling

In the bottom up approach:

— assgin the joint distribution of log-returns of different stocks
— obtain the portfolio distribution

— compute portfolio risk measures

however, it is difficult to assign the joint distribution, particularly when the number of assets is large and the
sample size is limited

it is feasible to use multivariaet Gaussian or historical simulartion

the exact portfolio log-return:

N
rp(t,t+A) = IOg(Z wie,.;(t,t+A)) = log(wler(t,t+A)) (6)
i=1
but the distribution of r, is not known in closed form, even if the log-returns are jointlt Gaussain

we can use RM approximation:

N
rp(t,t + A) ~ Z wir; (t) = w'r(t) (7)

use e” ~ 1 4+ x and log(z) ~ x to derive RM approximation
RM approximation does not work over long horizon and negative weights
The Parametric Gaussian Approach:

— use RM approximation, we can have (under zero serial correlation):
x E(rp(t,t + A)) =w'pa
* Var(rp(t,t+A)) =w' Y W

VaRg&L(t7t+ nA) = P(t) X (]_ _ e*VaRg(tiJrnA))
ESPEL(t ¢t 4+ nA) ~ P(t) x ES”(t,t +nA)

use MC simulation to simulate r,(¢,t + A), rather than using RM approximation:

— assign the mean vector and the covariance matrix

— simulate form a multivariate normal distribution (using the Cholesky decomposition) and a random vector
r®

— given the portfolio vectro w, compute r,(,i) = log(w’e"(9))

— repeat large number of times

— compute risk measure

o Given the Cholesky matrix A and the VCV matrix Z, the one-period simulated returns are: r(t) = AZ(t), and

simulated stock prices are: P(t + A) = P(t)eA%®)



9 Value at Risk for Derivative Positions

o Exact formula:
— possibel for a limited number of contracts for which there is a monotonic relation ship between risk factor
and contract price
— derivative price is an monotonic increasing function of the risk factor:
% determine the worst risk factor scenario at the given confidence level: Pyopgt (t+An) = P(t)etAn—Z1-a0Avn
* revaluate the derivative position at the worst case scenario
— derivative price is a monotonic decreasing function of the risk factor:

* determine the best risk factor scenario at the given confidence level: Py (t+An) = P(t)et2m+2 1—a0AVn
* revaluate the derivative position at the best case scenario
— Limits:
* the derivative price is easily computable
* it is monotonic function of the underlying risk factor

e Full revaluation via MC simulation:

— very general, and be abel to cope with accurate but very time consuming
— Price the derivative position using the current value of the risk factor P(t), i.e. compute C(P(¢),t)

— Simulate log-returns via our preferred model(either parametric Gaussian or historical simulation), so that
we can obtain M simulated scenarios 7 (¢, ¢ + nA)

— Obtain the simulated risk-factor price at the VaR horizon t+nA, e.g. by Pi(t,t+nA) = P(t) x e’ (tt+nd)
— Revaluate the derivative position at the time horizon under each simulated scenarios

— Compute the M simulated P& L on the derivative position

— Obtain VaR

Limits:

* the revaluation step can be very costly (MC of MC)
* use Taylor approximation to replace the repricing step

o Linear(Delta) approximation: fast but inaccurate

OC(P(L).1) ),

AC(P(), 1) ~ e

— Delta-Normal VaR:
* assume that percentage changes in the risk factor, i.e. %, have a Gaussian distribution

OC(P(1),t) OC(P(t),t)
5 ndt+ P

POyutntzy_o| 2CECDD by n )

Vv Rdelta—normal tt dt) = —
aftd (1, t-+ndt) = ~( -

o Quadratic(Delta-Gamma) approximation: good tradeoff between accuracy and computational cost

AC(P(1),t) = 80(1; ](f)’ﬂ i 60(5}(;),:&)

dP(t) 102C(P(t),t)
P(t) "2  8P?

dP(t)
P(t)

P(t) P2(t)( )? (10)

o finite difference method to approximate Greeks (but inaccurate)
¢ Delta-Gamma representation is valid only for small changes

o extend to multivariate case (Cholesky decomposition involved)



10 Parametric Value at Risk: The EWMA Approach

e estimate volatility using sample standard deviation:

— this is an unconditional estimator, and in principle it cannot react to market shocks

— cannot capture time-variation in the volatility

¢ The Risk-Metrics EWMA Model:
o2 (t,t+ A) = Mo (t — A, t) + (1 = Nr2(t — A t) (11)

— lower value of A give more weight to the most recent observation
— larger value of \ give more persistence to the variance series

— use MLE to estimate A: )
logL(ro, A, ..., T(r=1)a A, 07)
T-1
1 1 1 7r:ia
= ——log(27m) — =log(c?x) — = (—22)2
(~5los(2m) — glos(o%a) — (72

=0
¢ Simulate returns in the EWMA model:

— the simulated cumulative return is: 7(¢,t +nA) = 3" " ra

— at each time step:

* draw, independently from the previous extractions, a new random number ¢; according to a standard
normal r.v.

x use this random draw and the variance computed accodring to the EWMA scheme to simulate one-
period log-return:

ra(t +iAt+ (i 4+ 1)A) = \/62(t + it + (i + 1)A)e; (13)
* the simulated cumulative retun is obtained by the sum of the simulated one-period log-returns
* but n-periods log returns are not Gaussian

¢ Value at Risk with EWMA model

— estimate the model

— simulate M future scenarios to obtain M simulated values of r(t,t + nA)
— Compute the P&L distribution

— Compute the empirical percentile of the M simulated P&L

o the multivariate extension:

EWMA EWMA
STott+A) =X D> (A + (1= Nr(t— At - At) (14)

e Attractions and limits of EWMA

— Pros:

x relatively little data needs to be stored (only current estimate of the variance and the most recent
observation of return)

— Cons:

* does not allow for a leverage effect(i.e. negative dependency between return and volatility)
x this problem can be solved by GARCH or EGARCH

« GARCH vs EWMA

— EWMA has single parameter to control both market reaction and volatility persistence
— GARCH(1,1) separates two effects:

o (t) = w + ozrtQ_A(l —1{ri_an >0}) + ’yTtQ_A]l{rt_A >0} + ﬂaf_A (15)



— the above equation is a GJR model that is derived from GARCH(1,1), which captures the leverage effect
if o # 7y

e Stochastic Volatility Models:

— in SV models either the conditional and unconditional variance are assumed to be stochastic
— widely used in option pricing(can derive closed form solutions via Fourier transform)
— not used in risk-management due to difficulties in constructing the likelihood function

— Log-price dynamics: dlogP(t) = udt + /v(t)dW1(t)
Instantaneous variance dynamics: dv(t) = a(v(t),t)dt + S(v(t), t)dWa(t) (Hull& White model)

— Log-price dynamics: dlogP(t) = pdt + 1/v(t)dW(t)
Instantaneous variance dynamics: dv(t) = k(0 — v(t))dt + ey/v(t)dWa(t) (Heston model)

* mean-reverting

* positive volatility

11 Multifactor Models, Dimension Reduction and Principal Compo-
nent Analysis
o PCA gives the posibility to identify volattility factors from a time series of historical term structure
o Y is the covariance matrix
o eigenvalues are solutions of the linear system: det(d —AI2) =0
o the sum of eigenvalues is equal to trace(}")

o normalised eigenvectors at a given eigenvalue are solutions of the linear system:
)~ —Ail2)x, =0, (16)

e the i-th factor accounts for trdc’lﬁ of the total variance
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