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0 What to Know for the Exam
• to use transformation of variable: eg. given X and its cdf/pdf how to find the cdf/pdf of Y=g(X)

• The model r=m+sg*z and its properties (eg. mean, variance, simulation of cumulative returns)

• The Variance Ratio Test

• The model r= rho*r(t-1)+sg*z and its properties (eg. mean, variance, simulation of cumulative returns). How
to adjust VaR for autocorrelation

• Parametric VaR: asset and portfolio level (covariance matrix); Cholesky decomposition and Monte Carlo sim-
ulation

• Non Parametric VaR: quantile, bootstrap/historical simulation

• Estimation Risk: Parametric vs Bootstrap

• Backtesting VaR: Kupiec test, its functioning and its limits. How to compute the probability of type 1 and
type 2 errors

• Risk decomposition: MVaR, CVaR, IVaR

• Coherent Risk measures

• EWMA model: univariate and multivariate specfication. Pros & Cons. Comparison with GARCH and SV
models.

• VaR & Derivatives: exact formula, delta var and delta-gamma

• Principal Component Analysis (PCA is also part of Fixed Income): derivation of the characteristic equation,
computation of PCA in Excel and Matlab, how to use PCA to estimate the VaR of a bond portfolio

• Content of the coursework

• Exercise Handbook: Questions with up to 3 stars

• Exam Structure:

Remember that simple calculations do not deserve full marks. You have to outline all the assumptions/relevant
aspects that allow you to arrive to the final result.
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1 Introduction to Risk Analysis
Types of risks:

• Market Risk

• Credit Risk

• Model Risk

• Liquidity Risk

• Operational Risk

2 Measuring Return
• Model directly price, but it is non-stationary

• Model returns rather, as its is stationary

• The normality aasumption must be attached to log-returns rather to simple returns

• R (simple returns) will be distributed according to a shifted log-normal distribution

• Basic model for ∆−period log-returns: r(t) = r(t, t+∆) = µδ(t) + σ∆(t)ϵ(t)

– If stationary assumptions on r is valid, i.e. Covt(r(s, s+∆), r(u, u+∆)) = 0, ∀u, s
– then Et(r(t, t+∆)) = µ∆(t) and Vt(r(t, t+∆)) = σ2

∆(t)

• The assumption of zero-autocorrelation in log-returns can be tested using the Variacne Ratio Test

– V̂R(n) =
σ̂2
cum

nσ̂2
∆

∼ N(1, 2(n−1)
Tn ), which is close to 1 if the assumption is true

– normalize it, we have z(n) = V̂R(n)−1√
2(n−1)

Tn

∼ N(0, 1)

– [−1.96, 1.96] is the 95% acceptance region of the assumption

• MC simulation of returns: r∆(t) = µ∆ + σ∆ϵ(t)

• then stock prices: S(t+∆) = S(t)× er∆(t)

• Serially correlated AR(1) model:

– r(t) = ρr(t−∆) + σ∆ϵ(t)

– standard deviation growths according to:

SDev(r(t, t+ n∆)) = σ∆

√
n(1− ρ2) + ρ(1− ρn)(ρn+1 − ρ− 2)

(1− ρ)3(1 + ρ)

= σ∆

√
n

(1− ρ)2

= σ∆

√
n

√
1

(1− ρ)2
(Approximation)

(1)

– if we adopted square-root when the returns are AR(1), the ratio between true value and our estimate:

σ∆

√
n

1−ρ

σ∆
√
n

=
1

1− ρ
(2)

– then we under-estimated the true volatility (ρ > 0) or over-estimated it (ρ < 0)
– MC simulation of returns:

r∆(t) = ρr∆(t−∆) + σ∆ϵ(t) (3)

• Normal approximation is good for short horizons
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3 Introduction to Value at Risk
• SPAN system not appropriate for muilt-assets portfolio

• If estimated properly, the P&L distribution reflects the netting and diversification effects and can be compared
acorss portfolios

– are past data useful to forecast the future risk?
– best approach is a combination of approaches trying to include forward-looking information as well

• Basel committee chose:

– a 10-day horizon
– a 99% confidence level
– the probability distribution construction is left to the user
– Internal risk models: report 99% VaR over both one-day and 10-day horizon
– MRC(t) = VaR0.99(t, t +

10
255 ), (

S(t)
60

∑59
i=0 VaR0.99(t− i

255 , t−
i−10
255 ))

4 Estimating VaR: Parametric and Non-Parametric Approaches
• Parametric approach: such as the log-returns are distributed according to a Gaussian r.v., which requires

parameters estimation

• Non-parametric approach: do not make any assumption and use past data to build the empirical distribution

• Gaussian parametric approach:

– ESα(t, t+∆) = −(µ∆ − σ∆

1−α
1√
2π

e
− 1

2 (
−V aRα−µ∆

σ∆
)2
) = −(µ∆ − σ∆

ϕ(Z1−α)
1−α )

– ESα(t, t+ n∆) = −(µ∆ − σ∆
σ∆

√
n

1−α ϕ(Z1 − α))

– CONS:
∗ assumes the future will be like the past
∗ model-dependent procedure may be misleading if model is poor
∗ cannot capture skewed and fat-tailed characteristic

• Historical Simulation Approach:

– if (1− α)T is not an integer number, linear interpolation is required
– no simple procedure to extrapolate a n-period VaR
– need to collect n-period returns (inefficient)
– BOOTSTRAPPING: for T sufficiently large, we expect the bootstrapped distribution to be near the true

distribution (Central Limit Theorem)
– not accurate compared with parametric Gaussian approach, but no exposure to model risk
– sensitive to the length of data sample used
– unconditional distribution, i.e. do not model changes in volatility
– ghost effect

• Top-down approach:

– specifies the portfolio P&L distribution without reference to the constituents
– more parsimonious
– not fine enough to identify the identity of the component that contributed the most to the portfolio VaR

• Bottom-up approach:

– this requires the specification of the dependence structure, i.e. the joint distribution of the components
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• Estimation error:

– for large T, s.e.( ˆV aRα(t, t+ n∆)) = σ∆ ×
√

n
2T × |Z1−α| (Parametric Approach)

– for large T, s.e.( ˆV aR1−α) =
√

α(1−α)

T f̂2(− ˆV aR1−α)
(Non-parametric Approach)

• log-normal distribution:

– E(Y ) = eµ+
1
2σ

2 , and Var(Y ) = e2µ+σ2

(eσ
2−1)

5 Regulation and Backtesting VaR
• Internal risk model:

– report both the 99% VaR over a both a one-day horizon, i.e. V aR0.99(t, t+
1

255 ) and
– the one on a 10-day horizon, i.e. V aR0.99(t, t+

10
255 )

• MRC(t) = VaR0.99(t, t +
10
255 ), (

S(t)
60

∑59
i=0 VaR0.99(t− i

255 , t−
i−10
255 ))

• even when the multilier takes the value of 1.5, the MRC produces a much higher risk measure than 99.9% VaR

• Unconditional Coverage

– The Kupiec Test:
∗ examines the number of violations but does not consider if they cluster in time or not
∗ also called POF test
∗ 1− α is the theoretical probability of having a violation
∗ 1− α̂ =

∑n
i=1 Ii∆(α)

n is the observed violation frequency
∗ log-likelihood ratio: LRuc = −2logL(j,n,α)

L(j,n,α̂)

∗ null hypothesis: the VaR model is good (LRuc should have values near to 0)
∗ Asymptotically:

LRuc = −2(log((
1− α

1− α̂
)j) + log((

α

α̂
)n−j))

= −2(jlog(
1− α

1− α̂
) + (n− j)log(

α

α̂
)) ∼ X2

1

(4)

∗ Limits of Kupiec test:
· require a large number of data
· low power of test (Type II error) (increase the number of observations can reduce this problem)
· low power problem is exhacerbated when using MC simulation as the true model is changing

conditional volatility
· focus only on the number of exceptions, without considering the time distribution of those excep-

tions
· do not care about the size of the violation as well

• Independence property

– previous VaR violations must not convey any information about whether or not an additional VaR violation
– if a VaR violation is more likely to occur after a previous VaR violation, the this implies that the probability

of It+∆(α) conditional on the event that Iα(a) = 1 exceeds 1−α, and indicating that VaR estimate is too
small
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6 Coherent Risk Measure
• VaR does not describe the maximum loss

• VaR does not describe the losses in the left tail

• estimation risk in VaR (the sampling variability due to limited sample size)

– larger sample, better accuracy
– larger confidence level, lower accuracy

• may be not sub-additive

– diversification benefits (sub-additivity): V aR(X + Y ) ≤ V aR(X) + V aR(Y )

– VaR in Gaussian case has this peroperty, in other VaR, this may be violated

• Coherent Risk Measure:

– Monotonicity: Y ≥ X =⇒ ρ(Y ) ≤ ρ(X), i.e. if Y has better value under almost all scenarios, then Y
should have less risk

– Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y )

– Positive-homogeneity: ρ(λX) = λρ(X), if λ > 0

– Translation invariance: ρ(X + c) = ρ(X)− c

• ES and the worst-case analysis as in the SPAN system, are coherent risk measures

• VaR is coherent only under special assumptions about the distribution of returns (i.e. elliptical distribution)

• Proof of VaR is sub-additive under Gaussian case ...

7 Hot Spot Measuring Risk Contribution
• Marginal Risk:

– MRisk is the change in the portfolio risk from taking an additional dollar of exposure to a given component:
– MRisk = ∂ρα(w)

∂w

• Incremental Risk:

– IRisk is the change in the portfolio risk owing to a new position from taking an additional dollar of
exposure to a given component:

– IRisk = ρα(w +∆w)− ρα(w) = MRisk′ ·∆w

• Component Risk:

– CRisk indicates how much the portfolio risk would change if the given component was deleted;
– CRisk is the contribution of each component to the portfolio risk:
– CRisk = w.×MRisk

– the sum of Component Risk returns the total portfolio risk (if the risk measure is a homogeneous risk
function)

• In the Gaussian setting:

MV aR =
∂V aRα(t, t+ n∆)

∂w
= µ∆n− Z1−α

∑
∆ w√

w′ ∑
∆ w

√
n

CV aR = w.×MV aR

V aR = w′MV aR

(5)

• use EWMA to update VCV matrix
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• Best hedge:

– the VaR reduction given this hedge can be estimated as:
– ∆V aR = MV aRi ×∆wi

– ∆wi = −σw,i

σ2
i

8 Portfolio Modelling
• In the bottom up approach:

– assgin the joint distribution of log-returns of different stocks
– obtain the portfolio distribution
– compute portfolio risk measures

• however, it is difficult to assign the joint distribution, particularly when the number of assets is large and the
sample size is limited

• it is feasible to use multivariaet Gaussian or historical simulartion

• the exact portfolio log-return:

rp(t, t+∆) = log(

N∑
i=1

wie
ri(t,t+∆)) = log(w′er(t,t+∆)) (6)

• but the distribution of rp is not known in closed form, even if the log-returns are jointlt Gaussain

• we can use RM approximation:

rp(t, t+∆) ≃
N∑
i=1

wiri(t) = w′r(t) (7)

• use ex ≃ 1 + x and log(x) ≃ x to derive RM approximation

• RM approximation does not work over long horizon and negative weights

• The Parametric Gaussian Approach:

– use RM approximation, we can have (under zero serial correlation):
∗ E(rp(t, t+∆)) = w′µ∆

∗ Var(rp(t, t+∆)) = w′ ∑
∆ w

•
V aRP&L

α (t, t+ n∆) = P (t)× (1− e−V aRr
α(t,t+n∆))

ESP&L
α (t, t+ n∆) ≃ P (t)× ESr

α(t, t+ n∆)
(8)

• use MC simulation to simulate rp(t, t+∆), rather than using RM approximation:

– assign the mean vector and the covariance matrix
– simulate form a multivariate normal distribution (using the Cholesky decomposition) and a random vector

r(i)

– given the portfolio vectro w, compute r
(i)
p = log(w′er(i))

– repeat large number of times
– compute risk measure

• Given the Cholesky matrix A and the VCV matrix Z, the one-period simulated returns are: r(t) = AZ(t), and
simulated stock prices are: P(t+∆) = P(t)eAZ(t)
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9 Value at Risk for Derivative Positions
• Exact formula:

– possibel for a limited number of contracts for which there is a monotonic relation ship between risk factor
and contract price

– derivative price is an monotonic increasing function of the risk factor:
∗ determine the worst risk factor scenario at the given confidence level: Pworst(t+∆n) = P (t)eµ∆n−Z1−ασ∆

√
n

∗ revaluate the derivative position at the worst case scenario
– derivative price is a monotonic decreasing function of the risk factor:

∗ determine the best risk factor scenario at the given confidence level: Pbest(t+∆n) = P (t)eµ∆n+Z1−ασ∆
√
n

∗ revaluate the derivative position at the best case scenario
– Limits:

∗ the derivative price is easily computable
∗ it is monotonic function of the underlying risk factor

• Full revaluation via MC simulation:

– very general, and be abel to cope with accurate but very time consuming
– Price the derivative position using the current value of the risk factor P (t), i.e. compute C(P (t), t)

– Simulate log-returns via our preferred model(either parametric Gaussian or historical simulation), so that
we can obtain M simulated scenarios ri(t, t+ n∆)

– Obtain the simulated risk-factor price at the VaR horizon t+n∆, e.g. by P i(t, t+n∆) = P (t)×er
i(t,t+n∆)

– Revaluate the derivative position at the time horizon under each simulated scenarios
– Compute the M simulated P&L on the derivative position
– Obtain VaR
– Limits:

∗ the revaluation step can be very costly (MC of MC)
∗ use Taylor approximation to replace the repricing step

• Linear(Delta) approximation: fast but inaccurate

∆C(P (t), t) ≃ ∂C(P (t), t)

∂t
dt+

∂C(P (t), t)

∂P
P (t)

dP (t)

P (t)
(9)

– Delta-Normal VaR:
∗ assume that percentage changes in the risk factor, i.e. dP

P , have a Gaussian distribution

V aRdelta−normal
α (t, t+ndt) = −(

∂C(P (t), t)

∂t
ndt+

∂C(P (t), t)

∂P
P (t)µ∆n+Z1−α|

∂C(P (t), t)

∂P
)|P (t)σ∆

√
n)

• Quadratic(Delta-Gamma) approximation: good tradeoff between accuracy and computational cost

∆C(P (t), t) ≃ ∂C(P (t), t)

∂t
dt+

∂C(P (t), t)

∂P
P (t)

dP (t)

P (t)
+

1

2

∂2C(P (t), t)

∂P 2
P 2(t)(

dP (t)

P (t)
)2 (10)

• finite difference method to approximate Greeks (but inaccurate)

• Delta-Gamma representation is valid only for small changes

• extend to multivariate case (Cholesky decomposition involved)
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10 Parametric Value at Risk: The EWMA Approach
• estimate volatility using sample standard deviation:

– this is an unconditional estimator, and in principle it cannot react to market shocks
– cannot capture time-variation in the volatility

• The Risk-Metrics EWMA Model:

σ2(t, t+∆) = λσ2(t−∆, t) + (1− λ)r2(t−∆, t) (11)

– lower value of λ give more weight to the most recent observation
– larger value of λ give more persistence to the variance series
– use MLE to estimate λ:

logL(r0, r∆, ..., r(T−1)∆|λ, σ2
0)

=

T−1∑
j=0

(−1

2
log(2π)− 1

2
log(σ2

j∆)−
1

2
(
rj∆
σj∆

)2)
(12)

• Simulate returns in the EWMA model:

– the simulated cumulative return is: r(t, t+ n∆) =
∑n−1

i=0 r∆,i

– at each time step:
∗ draw, independently from the previous extractions, a new random number ϵi according to a standard
normal r.v.

∗ use this random draw and the variance computed accodring to the EWMA scheme to simulate one-
period log-return:

r∆(t+ i∆, t+ (i+ 1)∆) =
√
σ̂2(t+ i∆, t+ (i+ 1)∆)ϵi (13)

∗ the simulated cumulative retun is obtained by the sum of the simulated one-period log-returns
∗ but n-periods log returns are not Gaussian

• Value at Risk with EWMA model

– estimate the model
– simulate M future scenarios to obtain M simulated values of r(t, t+ n∆)

– Compute the P&L distribution
– Compute the empirical percentile of the M simulated P&L

• the multivariate extension:
EWMA∑

(t, t+∆) = λ

EWMA∑
(t−∆, t) + (1− λ)r(t−∆, t)r′(t−∆, t) (14)

• Attractions and limits of EWMA

– Pros:
∗ relatively little data needs to be stored (only current estimate of the variance and the most recent
observation of return)

– Cons:
∗ does not allow for a leverage effect(i.e. negative dependency between return and volatility)
∗ this problem can be solved by GARCH or EGARCH

• GARCH vs EWMA

– EWMA has single parameter to control both market reaction and volatility persistence
– GARCH(1,1) separates two effects:

σ2(t) = w + αr2t−∆(1− 1{rt−∆ > 0}) + γr2t−∆1{rt−∆ > 0}+ βσ2
t−∆ (15)
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– the above equation is a GJR model that is derived from GARCH(1,1), which captures the leverage effect
if α ̸= γ

• Stochastic Volatility Models:

– in SV models either the conditional and unconditional variance are assumed to be stochastic
– widely used in option pricing(can derive closed form solutions via Fourier transform)
– not used in risk-management due to difficulties in constructing the likelihood function
– Log-price dynamics: dlogP(t) = µdt+

√
v(t)dW1(t)

Instantaneous variance dynamics: dv(t) = α(v(t), t)dt+ β(v(t), t)dW2(t) (Hull& White model)
– Log-price dynamics: dlogP(t) = µdt+

√
v(t)dW1(t)

Instantaneous variance dynamics: dv(t) = k(θ − v(t))dt+ ϵ
√
v(t)dW2(t) (Heston model)

∗ mean-reverting
∗ positive volatility

11 Multifactor Models, Dimension Reduction and Principal Compo-
nent Analysis

• PCA gives the posibility to identify volattility factors from a time series of historical term structure

•
∑

is the covariance matrix

• eigenvalues are solutions of the linear system: det(
∑

−λI2) = 0

• the sum of eigenvalues is equal to trace(
∑

)

• normalised eigenvectors at a given eigenvalue are solutions of the linear system:

(
∑

−λiI2)xλi = 02 (16)

• the i-th factor accounts for λi

trace(
∑

) of the total variance
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